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[1] We use radiance measurements and inversions of the Aerosol Robotic Network
(AERONET) (Dubovik and King, 2000; Holben et al., 1998; Holben et al., 2001) to
classify global atmospheric aerosols using the complete archive of the AERONET data set
as of December 2002 and dating back to 1993 for some sites. More than 143,000 records
of AERONET solar radiance measurements, derived aerosol size distributions, and
complex refractive indices are used to generate the optical properties of the aerosol at more
than 250 sites worldwide. Each record is used in a clustering algorithm as an object, with
26 variables comprising both microphysical and optical properties to obtain six
significant clusters. Using the mean values of the optical and microphysical properties
together with the geographic locations, we identified these clusters as desert dust,
biomass burning, urban industrial pollution, rural background, polluted marine, and dirty
pollution. When the records in each cluster are subdivided by optical depth class, the
trends of the class size distributions show that the extensive properties (mode amplitude
and total volume) vary by optical depth, while the intensive properties (mean radius and
standard deviation) are relatively constant. Seasonal variations of aerosol types are
consistent with observed trends. In particular, the periods of intense biomass burning
activity and desert dust generation can be discerned from the data and the results of the
analyses. Sensitivity and uncertainty analyses show that the clustering algorithm is quite
robust. When subsets of the data set are randomly created and the clustering algorithm
applied, we found that more than 94% of the records retain their classification. Adding 10%
random noise to the microphysical properties and propagating this error through the
scattering calculations, followed by the clustering algorithm, results in a misclassification
rate of less than 9% when compared with the noise-free data.

Citation: Omar, A. H., J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick (2005), Development of global

aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements, J. Geophys. Res., 110, D10S14,

doi:10.1029/2004JD004874.

1. Introduction

[2] Global aerosol properties are important not only for
use in radiative transfer models but also as inputs to the
inversion algorithms of satellite-based measurements of
aerosol optical properties. As we approach an era of
unprecedented global coverage of aerosol profile measure-
ments (Geoscience Laser Altimeter System (GLAS) and
Cloud Aerosol Lidar and Infrared Pathfinder Spaceborne
Observations (CALIPSO)) to augment the satellite measure-
ments of aerosol optical depths by passive instruments

(Moderate Resolution Imaging Spectrometer (MODIS),
Multiangle Imaging Spectroradiometer (MISR), POLDER,
Total Ozone Mapping Spectrometer (TOMS), and Strato-
spheric Aerosol and Gas Experiment (SAGE)), there is a
need for well characterized aerosol properties. In its most
recent report, the Intergovernmental Panel on Climate
Change (IPCC) [2001] found that radiative forcing by
aerosols is the most uncertain of all radiative forcing
estimates. Reducing these uncertainties calls for expanded
aerosol measurements and studies to characterize different
types of aerosols and sources [National Research Council
(NRC), 1996] (see also the National Aerosol-Climate Inter-
actions Program (NACIP) White Paper; available at http://
www-NACIP/ucsd.edu). Tropospheric aerosols are diverse
and their properties depend on sources, emission rates, and
removal mechanisms which can be highly variable. To
understand and quantify aerosol effects, there have been
numerous domestic and international campaigns to charac-
terize aerosol physical and chemical properties and processes.
These include the Aerosol Characterization Experiments
(ACE-1, ACE-2, and ACE-Asia), the Tropospheric Aerosol
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Radiative Forcing Observational Experiment (TARFOX),
the Smoke, Clouds, and Radiation-B (SCAR-B) experi-
ment, and the Indian Ocean Experiment (INDOEX).
ACE-1 took place south of Australia in November–Decem-
ber 1995 and measured properties of the natural aerosol in
the remote marine boundary layer [Bates et al., 1998].
ACE-2 took place in the north Atlantic ocean in June–July
1997, and focused on the radiative effects and processes
controlling anthropogenic aerosols from Europe and desert
dust from Africa as they were transported over the north
Atlantic ocean [Raes et al., 1999]. ACE-Asia took place
during the spring of 2001 off the coast of China, Japan and
Korea. This region includes many types of aerosols of
widely varying composition and sizes derived from one of
the largest aerosol source regions on Earth. TARFOX
[Russell et al., 1999], designed to measure and analyze
aerosol properties and effects along the US eastern seaboard,
took place on 10–31 July 1996. INDOEX [Ramanathan et
al., 2001] measured aerosol properties over the tropical
Indian Ocean in 1998 and 1999. The large aerosol optical
thicknesses (�0.5) and the prominent role of the carbona-
ceous aerosols in the extinction budget during most of
INDOEX underline the need to develop long-term records
of specific species.
[3] In many cases, mean properties sorted by location or

type to represent aerosol characteristics are used in radiative
transfer calculations [Kiehl and Briegleb, 1993; Kiehl and
Rodhe, 1995; Nemesure et al., 1995; Penner et al., 1992] or
inversion algorithms of satellite measurements [Tanré et al.,
1999]. Assigning a set of mean aerosol physical and
chemical properties to a given location based on a long-
term average has significant shortcomings. This is because
at any given location, the aerosol type can be variable on
timescales as short as a few hours [Sheridan et al., 2001].
These variations result from transport of distinct air masses
to a site and nonsystematic events such as fires, wind gusts,
hurricanes, tornadoes, and land clearing and development
activities. These variations lead to diverse aerosol character-
istics at each site on timescales as short as a few hours and
preclude the long term average of properties from being a
good representation of the characteristics for a site or
region. On the other hand, the frequency of occurrence of
a given type of aerosol at a location is an indication of the
likelihood of finding that type of aerosol at that location if
an adequately large sample (years) is used to calculate this
frequency. Aerosol optical measurements must therefore be
made at short timescales (on the order of a few hours) to
develop a large database which can be used to derive
statistically significant correlations. The Aerosol Robotic
Network (AERONET) [Holben et al., 1998, 2001] measure-
ments provide a database with a fine temporal resolution
albeit for column rather than vertically resolved measure-
ments. AERONET is an automatic robotic Sun and sky
scanning measurement network that has grown rapidly to
over 200 sites worldwide. AERONET uses multiangle
radiance measurements to retrieve the discrete aerosol size
distributions in 22 size bins ranging from 0.05 to 15 mm and
the complex refractive index. The network has the important
features of uniform data collection, calibration, and
data processing procedures. This study uses the whole
AERONET archive (up to December 2002) of measure-
ments and inversions to develop a type-specific set of mean

optical properties of aerosols. Cluster analysis is used for
categorization of atmospheric aerosol types. Six significant
types are suggested by the cluster analysis which we
identify as: desert dust, biomass burning, polluted continen-
tal, clean continental, polluted marine aerosol, and dirty
pollution. In this classification, clean continental refers to a
lightly loaded soot-free pollution normally found in rural
areas and is good approximation for background aerosol.
Dirty pollution refers to pollution containing significant
amounts of absorbing species.

2. Data Screening and Preparation

[4] An attempt is made to use all the available AERONET
measurements dating back to 1993 for some sites. These
unscreened measurements are frequently contaminated by
clouds and depending on the cloud reflectivity, can have a
significant effect on the Sun-sky radiance measurements.
This study used the AERONET level 1 size distribution data
and applies a two-part cloud screening scheme. The first
part checks the symmetry of the almucantar measurements
and the second part is a statistical screening procedure. The
almucantar measurement is made at several azimuthal
angles with the elevation angle of the direct Sun. For the
aureole measurement, the increment of angle change is set
to be quite small near the direction of the Sun. In order to
ensure that the sky is clear at the time of the measurement,
we calculate the relative error between the seven pairs of
data measured on either side of the direct Sun. The
azimuthal angles of these measurements are 2.0�, 2.5�,
3.0�, 3.5�, 4.0�, 5.0�, and 6.0�. Using this method ensures
that the sky is clear near the measurements because the
presence of cloud cover would result in disparities between
symmetrical pairs of measurements.
[5] The statistical screening procedure is based on the

cloud screening method for the direct solar measurement of
the AERONET Sun/sky radiometer. In this procedure,
records with optical depths (t) and Angstrom coefficients
(å) that exceed a fixed number of standard deviations (s) on
either side of the mean of the distribution are not included in
the analyses. For this study, the range of acceptable optical
depths is tmean � s to tmean + 3s. The acceptable Angstrom
coefficients are greater than åmean � 3s. These conditions
assume that unrealistically large aerosol extinction values
are due to cloud contamination or other transient phenom-
ena. A very small Angstrom coefficient is also indicative of
cloud contamination. This cloud screening scheme on the
average rejects about 60% of the data.

3. Cluster Analysis

[6] Cluster analysis is a statistical tool used for grouping
large data sets into several categories using predefined
variables. In this study, cluster analysis by partitioning [cf.
Kaufman and Rousseeuw, 1990] is used to categorize the
AERONET data set based on several optical and physical
characteristics of the aerosol. The cluster algorithm uses the
26 parameters in Table 1. Note that the optical depths are
not used in the cluster analysis because these depend on the
amount of aerosol rather than type. The first two columns of
the table are properties from the AERONET inversion
algorithms. In the third column are optical properties that
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can be generated from AERONET inversions of size distri-
bution and complex refractive indices using scattering
calculations such as Mie modeling [Dubovik and King,
2000; Mie, 1908], T-matrix [Mishchenko et al., 1995] or
geometric-optics integral equations [Dubovik et al., 2002b;
Yang and Liou, 1996] depending on the scattering calcula-
tion used in the AERONET inversion algorithm. For this
data set, the optical properties were generated using Mie
calculations. After clustering, the individual sites are
inspected to find the frequency of records in the categories.
A site belongs to a category x if more than 30% of the
records at that site are grouped in cluster x. It is therefore
possible for a site to belong to more than one category, i.e.,
the site experiences a high frequency of more than one type
of aerosol.
[7] The AERONET algorithm for size distribution re-

trieval provides the volume distribution data of 22 size bins
(dV/dlnr, V is volume, and r is radius) from 0.05 mm to 15 mm.
The best fit for the size distribution data is a two-mode log-
normal size distribution described by equation (1),

dV

d ln r
¼ Cfffiffiffiffiffiffi

2p
p

ln of
exp

ln r � ln rmf½ �2

2 ln ofð Þ2

 !
þ Cfffiffiffiffiffiffi

2p
p

ln oc


 exp ln r � ln rmc½ �2

2 ln ocð Þ2

 !
; ð1Þ

where the Cs are total mode volume (mm3/mm2) and the
subscripts F and c denote fine and coarse modes, respec-
tively. s is the geometric standard deviation and rmf (rmc) is
the geometric fine (coarse) mean radius. This partition of
the size distribution into fine and coarse modes yields six
parameters by which the size distribution can be described.
[8] Natural and anthropogenic aerosols are can be classi-

fied into five main types: marine aerosol, desert dust,
biomass burning aerosol, urban aerosol and rural back-
ground aerosol. This forms the minimum number of aerosol
clusters. The actual number of clusters is determined by
calculating the clusters using successively larger cluster
numbers until the calculation does not yield any new
significant clusters. For the AERONET records we found
that six categories were the most representative. The clus-
tering algorithm involves the following main steps. First the
number of clusters, k, is specified. The algorithm then
calculates the mean (m) and standard deviation (s) of each
of the 26 variables. For each variable k points are randomly
chosen between m + s and m � s. These points form the
initial centers of the k clusters. For a given number of

clusters (k), the results are not sensitive to the initial ‘‘seed’’
points. The only difference caused by varying the chosen
starting point is the number of iterations it takes to con-
verge. Our choice of points within one standard deviation
ensures that convergence will be achieved relatively quickly.
The next step is to calculate the Euclidean distance of each
record from the center of the k clusters. Initially each record
is assigned to the cluster whose center is ‘‘closest’’ (using a
Euclidean distance metric) to the record. When all records
have been assigned to individual clusters, new cluster
centers are determined by averaging the variables in each
cluster. The data clusters formed in this way group all
records that have statistically significant similarities in one
category. The process is repeated until the change in
position between the old and new centers (shift) is less than
a prescribed threshold value, i.e., the position of the new
center is unchanged. The threshold value of the shift in the
cluster centers was set at 0.1%. Figure 1 shows a flowchart
of the clustering algorithm. The objects in the clustering
algorithm are the cloud-screened AERONET inverted prod-
ucts (size distributions and complex refractive indices) and
optical properties determined using scattering calculations.
The distance (normalized by the standard deviation to
eliminate bias resulting from the different magnitudes of
the variables) between a record and the center of category j,
is calculated using equation (2),

normalized distance ¼
Xi¼26

i¼1

data record ið Þ � center j; ið Þ
standard deviationð Þ2

; j ¼ 1; 6

ð2Þ

Convergence of the clustering algorithm is achieved in less
than 40 iterations for the various initial conditions.

4. Clusters of Aerosol Types

[9] The AERONET data set yielded six distinct clusters
described by the column optical and physical properties. Six
clusters provided the largest number of clusters in which
each cluster had a reasonable number of members. All the six
clusters were well populated, i.e., the number of members of
each cluster is at least 4% of the total. When we go to seven or
eight clusters, the smallest cluster is composed of a very small
number of points. As we go to a larger number of clusters, the
members of the main clusters are relatively unchanged. The
clusters do however lose a few members to form one or two
new clusters. On closer examination, these additional clusters
do not look real, e.g., geographic locations of the records are
inconsistent with the type of aerosol expected at that location.
Ideally, the algorithm should be objective and automated if
cluster analyses are to be used to classify optical measure-
ments for the purpose of assigning types to aerosols in near
real time. Though the initialization and choice of the number
of clusters is subjective in our algorithm, the consistency and
error analysis described in sections 6 and 8, respectively,
show that the method is quite robust. In general, a well
partitioned data set with distinct groups should have ‘‘tight’’
clusters, i.e., clusters with small n-dimensional spheres, and
the centers of these spheres should be as far from each other as
possible (well separated groups).
[10] After the clustering algorithm has generated aerosol

categories, each category is assigned an aerosol type.

Table 1. Parameters Used in the Cluster Analysisa

Composition Size Distributionb Optical Properties

Complex refractive
index (8)

mean radius (2) single scattering albedo (4)

standard deviation (2) asymmetry factor (4)
mode total volume (2) extinction/backscatter

ratio (4)
aThe numbers in parentheses denote the number of variables for the given

property, e.g., there are two geometric mean radii, a fine and coarse radius.
Note that the number of variables for the optical properties is four denoting
the 441, 673, 873, and 1022 nm wavelengths of the AERONET
measurements.

bThe size distribution parameters are based on a bimodal log normal
distribution.
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Aerosol typing of the categories relies on type-indicative
characteristics such as the fine and coarse fractions, particle
size, optical depth, geographic location and in some cases
seasonal variation. The effects of nonsphericity on the
cluster analysis are unknown but not negligible. Table 2
shows the properties of the six clusters. The values shown in
the table are some of coordinates in 26-parameter space of
the centers (medoids) of the clusters. The membership
coefficient is the mean Euclidean distance between the
center of each cluster and every member of the cluster
normalized by standard deviation of each variable. There-
fore the smaller the membership coefficient, the better the
correlation between the records within a cluster.
[11] For category 1, the membership coefficient of 0.92 is

the average value of normalized distance between the center
of category 1 and 22,202 points. The properties of the
medoids along with the geographic locations of the sites

suggest that categories 1 to 6 are desert dust, biomass burning,
rural (background), industrial pollution, polluted marine, and
dirty pollution, respectively. Table 2 shows the number of
records in each cluster. The category 5 (marine) cluster has the
least number of records (�5% of the total) while category 4
(continental pollution) has the largest number (�40%) of the
total. This indicates that the locations of AERONET sites
worldwide aremore likely to experience continental pollution
more than other aerosol types. In general, anthropogenically
influenced categories (categories 2, 4, and 6, biomass burn-
ing, continental pollution, and dirty pollution, respectively)
account for two thirds of the records. Natural sources (cate-
gories 1 and 5, dust andmarine, respectively) account for 20%
of the records and the remaining 14% is attributable to rural/
background (category 3) aerosol types.
[12] The AERONET sites belonging to category 1 are

Banizoumbou, Ouagadougou, Cape Verde, Ilorin, Solar

Table 2. Summary of the Cluster Analyses Results by Categorya

Category 1 Category 2 Category 3 Category 4 Category 5 Category 6

Number of records 22,202 26,662 20,307 55,667 6527 12,548
Single scattering albedo (673 nm) 0.93 0.80 0.88 0.92 0.93 0.72
Real refractive index (673 nm) 1.4520 1.5202 1.4494 1.4098 1.3943 1.4104
Imaginary refractive index (673 nm) 0.0036 0.0245 0.0092 0.0063 0.0044 0.0337
Optical depth (673 nm) 0.327 0.190 0.036 0.191 0.140 0.100
Angstrom coefficient (441/673) 0.608 1.391 1.534 1.597 0.755 1.402
Angstrom coefficient (673/873) 0.486 1.332 1.381 1.536 0.678 1.232
Angstrom coefficient (873/1022) 0.277 1.043 0.950 1.290 0.531 0.846
Asymmetry factor (673 nm) 0.668 0.603 0.580 0.612 0.711 0.594
Fine mean radius, mm 0.117 0.144 0.133 0.158 0.165 0.140
Geometric standard deviation (fine) 1.482 1.562 1.502 1.526 1.611 1.540
Fine total volume, mm3/mm2 0.077 0.040 0.013 0.061 0.029 0.032
Coarse mean radius, mm 2.834 3.733 3.590 3.547 3.268 3.556
Geometric standard deviation (coarse) 1.908 2.144 2.104 2.065 1.995 2.134
Coarse total volume, mm3/mm2 0.268 0.081 0.020 0.054 0.083 0.034
Fine fraction by volume 0.22 0.33 0.38 0.53 0.26 0.49
Membership coefficient 0.92 0.93 0.94 0.93 0.91 0.89

aThe values are the center of each cluster. The membership coefficient is an indication of the ‘‘tightness’’ of each cluster.

Figure 1. Flowchart of the clustering algorithm used to group 143,913 AERONET records into clusters
of with similar composition, size distribution, and optical properties. The convergence is achieved when
the cluster centers in 26-parameter space do not change by more than 0.1% in successive iterations.
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Village, Bahrain, Kanpur, Dahkla, Sede Boker, Nes Ziona,
Maricopa, Ascension Island, La Paguera, and Yulin shown
in Figure 2. All these sites are in desert regions, close to
deserts, or in regions where desert dust as a result of long-
range transport has been observed [Colarco et al., 2003;
Di Iorio et al., 2003; Dubovik et al., 2002a; Tanré et al.,
2001]. Figure 3a shows a mean radius and geometric
standard deviation for the fine (coarse) mode of 0.12 mm
and 1.5 (2.8 mm and 1.91), respectively, for this category.
The fine fraction by volume is 0.22, i.e., coarse sizes are
dominant. The medoid properties of these aerosols are
consistent with other measurements of dust aerosols. The
global aerosol model of d’Almeida et al. [1991] estimate
dry accumulation and coarse mode radii for dust of 0.27 mm
and 4.00 mm, respectively. Tanré et al. [2001] used
spectral measurements from both Landsat TM and
AERONET to find size distributions for dust aerosols
of 0.5 mm for the fine mode and 1–5 mm for the coarse
mode. Real refractive indices from the same study ranged
from 1.46–1.52.

[13] Using airborne particle counters, a ground based
lidar and sunphotometer, Di Iorio et al. [2003] estimated
real and imaginary parts (mr and mi) of the refractive indices
of (1.52 to 1.58) � (0.005 to 0.007)i for dust aerosols. In the
same study they estimate single scattering albedos ranging
from 0.71 to 0.75. Category 1 aerosols have a mean single
scattering albedo of 0.93 which is closer to the values
reported by others [cf. Tanré et al., 2001]. In studies of
the mineralogical composition of dust, Sokolik and Toon
[1999] report mr values of 1.5 for kaolinite, quartz, calcite,
and gypsum and 1.35 for illite. In the same study, the mi

ranged from 0.000044 for kaolinite and montmorillonite to
0.001 for illite and nearly 1.0 for hematite at wavelengths
near 600 nm. These studies show that there is intricate
spatial variability of the composition of dust aerosols
depending on sources, transport and mixing which cannot
be resolved by AERONET measurements and these analy-
ses alone. In general the elemental composition of dust from
various geographical locations are highly variable resulting
in significant differences in the complex refractive indices.

Figure 2. The locations (denoted by red dots) of the six categories. The locations and properties of the
categories 1, 2, 4, 5, and 6 are consistent with desert dust, biomass burning, continental pollution,
polluted marine, and dirty pollution, respectively.
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As has been noted by others [e.g., Sokolik et al., 2001], the
characterization of dust aerosols will require a concerted
effort involving in situ and ground based measurements,
and satellite remote sensing at targeted regions.
[14] Category 2 sites include Skukuza, IMS Metu

Erdemli, Abracos Hill, Mongu, Cuiaba, Los Fieros, Yulin,
CEILAP-BA. Figure 3b shows the size distributions de-
scribed by fine (coarse) radius and standard deviation of
0.14 mm, and 1.56 (3.7 mm, and 2.1), respectively. The fine
fraction based on the volume distribution is 0.33. Real and
imaginary parts of the refractive index of 1.52 and 0.02 are
consistent with measurements of Dubovik et al. [2002b] and
Ansmann et al. [2000]. Furthermore, a comparison of the
properties of category 2 aerosols are comparable to the
observations of predominantly fine mode aerosol observed
at the IMS Metu Erdemli site and believed to have a
significant biomass burning component [Kubilay et al.,
2003].
[15] Using spectrally resolved particle backscatter and

extinction measurements, the effective particle radius of
free tropospheric aerosol advected from the Indian subcon-
tinent and primarily composed of biomass burning pollution
is estimated at 0.17 mm [Ansmann et al., 2000]. Müller et al.
[2000] found effective radii ranging between 0.14 and
0.22 mm, complex refractive indices of 1.65� (0.03 to 0.08)i
and single scattering albedos of 0.79 to 0.86 at 532 nm for
similar aerosol plumes. A series of measurements of both
microphysical and optical properties of biomass burning
aerosols made during the SCAR-B campaign [Kaufman et
al., 1998] found values of size distributions (rf � 0.13–
0.17 mm, sf � 1.5–1.8), single scattering albedos (0.79–
0.85), and real refractive indices (1.37–1.55), not inconsis-
tent with the values reported for category 2 in Table 2.
[16] The category 3 aerosol is characterized by a low

optical depth (0.04) and a high frequency of incidence in

areas where the atmosphere is expected to be relatively
clean, i.e., clean continental or rural background. The
members of this category include Mauna Loa, Railroad
Valley, Saturn Island, Sevilleta, Rogers Dry Lake, Bonanza
Creek, Rimrock, Maricopa, H. J. Andrews, Howland,
Konza EDC, Bethlehem, San Nicolas shown in Figure 2.
The fine fraction by volume for category 5 is 0.4. Figure 3c
shows the size distribution described by a fine (coarse)
radius and standard deviation of 0.13 mm, and 1.50 (3.6 mm,
and 2.1), respectively, for this category. Most of these sites
are continental and are mostly in the western United States.
Though Mauna Loa is an oceanic site, the site elevation of
3397 m above mean sea level means measurements are
above the marine boundary layer most of the time and
explains why the site experiences mostly background aero-
sol. Though this category has a large number of records
(20,307), the low optical depth of the measurements means
necessarily that the retrieval accuracy is significantly dete-
riorated. For all AERONET measurements the accuracy of
the single scattering albedo, and refractive indices decreases
significantly for optical depths of less than 0.2 (at 441 nm)
[Dubovik et al., 2002a, 2000]. It is therefore likely that the
single scattering albedos reported in Table 2 are unrealisti-
cally low.
[17] Category 4 aerosols are most prevalent at Walker

Branch, Venice, ISDGM CNR, Moscow MSU MO, MD
Science Center, Columbia SC, GSFC, Wallops, SERC,
Avignon, UCLA, Cart Site, Mexico City, Toulouse,
Anmyon, Lille, Moldova, Stennis, Rome Tor Vergat, Konza
EDC, Rio Branco, Nes Ziona, Ispra, Shirahama, La Jolla,
Bondville, COVE, Dry Tortugas, Alta Floresta, Arica,
Fresno, GISS, Sao Paulo, Gotland, Bethlehem, Abracos
Hill, Bahrain, Sioux Falls, Los Fieros, Corcoran, Sede
Boker, Kaashidhoo, El Arenosillo, Bermuda, Bordeaux,
Mongu, Waskesiu. The fine fraction by volume is 0.53

Figure 3. Size distributions of the cluster medoids of the six aerosol categories.
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and the size distribution is described by a fine (coarse)
radius and standard deviation of 0.16 mm, and 1.53 (3.5 mm,
and 2.1), respectively (Figure 3d). The location of the
aerosols (near or in urban centers), and the composition
(mean refractive index of 1.41–0.006i) are consistent with
urban pollution consisting of mainly sulfate particles with a
small absorbing (soot) component.
[18] Category 5 sites are Lanai, Tahiti, Arica, La Paguera,

Dry Tortugas, Ascension Island, La Jolla. The fine fraction
is 0.26 and the refractive index is 1.39–0.004i at 673 nm.
The global aerosol models of d’Almeida et al. [1991]
estimate an oceanic aerosol refractive index of 1.38 with a
negligibly small imaginary part. All the sites are islands or
coastal sites. The size distribution is described by a fine
(coarse) radius and geometric standard deviation of 0.17 mm,
and 1.6 (3.3 mm, and 2.0), respectively (Figure 3e). In case
studies of three clean maritime sites, Smirnov et al. [2003]
found effective fine and coarse mode radii ranges of 0.11–
0.14 mm and 1.8–2.1 mm, respectively, and complex refrac-
tive indices of 1.37–0.001i resulting in a single scattering
albedo (w) of 0.98. All these parameters except the imag-
inary index of refraction (and consequently the w) are
consistent with the mean values of this cluster. While the
coarse mode is seasalt, the fine mode, whose contribution is
most likely responsible for the enhancement of the imagi-
nary part of the total refractive index, is most likely biomass
burning aerosol or from other anthropogenic sources. It is
therefore likely that category 5 is marine aerosol mixed with
biomass burning smoke or industrial pollution. We refer to
this type as polluted marine aerosol.
[19] Category 6 sites are Egbert, Skukuza, Bordeaux,

Etosha Pan, Belterra, IMS Metu Erdeml, Waskesiu, and
Dalanzadgad. Three of these sites (Skukuza, IMS Metu
Erdeml, and Dalanzadgad) are also found in category 2.
This class of aerosols (referred to as dirty pollution) is
characterized by a size distribution (Figure 3f) similar to
category 4 (industrial pollution) with a larger imaginary
index of refraction (0.034) and small single scattering
albedos. The low single scattering value (0.72) implies that
these are most likely aerosols with a large fraction of
elemental carbon. In addition to the mixing mechanism of
soot, single scattering albedo depends on the age of the
smoke, the combustion phase and fuel moisture content.
The single scattering albedo for fresh smoke plumes near
forest fires ranges from 0.35 to 0.9 with a mean value of
0.75 for flaming combustion and 0.82 for smoldering
combustion [Reid et al., 1998]. It is therefore likely that
category 6 represents flaming combustion while category 2
is the more frequent smoldering type of combustion. Also
note that category 6 aerosols have relatively thin layers
which necessarily means that uncertainties in the single
scattering albedo could be as high as 0.07 [Dubovik et al.,
2002a]. The likelihood that the low single scattering albedos
for category 6 are not an artifact of low solar zenith angles is
explored below.
[20] Figure 4 shows cumulative distributions of (Figure 4a)

the optical depth, (Figure 4b) Angstrom coefficients,
(Figure 4c) imaginary part of the refractive index, and
(Figure 4d) single scattering albedo. At least 50% of the
category 1, 2, and 4 aerosol types have an optical depth larger
than 0.1 and therefore the retrievals of the microphysical
properties have reasonable uncertainties. The distributions of

the Angstrom coefficients shows that more than 60% of
category 1 aerosols (dust) haveAngstrom coefficients smaller
than 0.5, i.e., large particles. The next smallest distribution of
Angstrom coefficients are category 5 aerosols (polluted
marine). Angstrom coefficients of both category 4 (industrial
pollution) and category 2 (biomass burning) are mostly
between 1 and 2. Angstrom coefficients of 70% the
category 4 aerosols fall between 1 and 2, and more than
50% of the category 2 aerosols fall in this Angstrom
coefficient range. This is the expected Angstrom coeffi-
cient range for small particles.
[21] The distributions of the imaginary part of the refrac-

tive indices shows that categories 1 (dust), 4 (continental
pollution) and 5 (polluted marine) have imaginary parts of
the refractive indices smaller than 0.02 nearly all the time,
while categories 2 (biomass burning) and 6 (dirty pollution)
Angstrom coefficients are greater than 0.02 for more than
60% of the records. More than half of the dirty pollution
records have single scattering albedos of less than 0.7. Dust,
polluted marine, and polluted continental have the highest
single scattering albedos and the variation in the frequency
of these types is very small as shown in the figure.
[22] Figure 5 shows the distributions of the solar zenith

angles and the single scattering albedos for category 6
aerosols. The mean solar zenith angles for all category 6
records is 60.1 degrees with a standard deviation of
12.9 degrees. Most of the measurements, therefore, have a
small error due to low solar zenith angles. The mean single
scattering albedo of 0.72 with a standard deviation of 0.06
does not show any significant bias due to low solar zenith
angle values. The largest uncertainty in these values is due to
the retrieval uncertainties associated with the low optical
depths (mean optical depth of category 6 is 0.1).

5. Seasonal Variation of Aerosol Types at
Selected Sites

[23] The clustering algorithm assigns each cloud-screened
and quality-qualified record in the database to one of the six
clusters and therefore affords an easy method of examining
the seasonal variation of aerosol types at each individual
site. The seasonal variation also aids in identifying the type
of aerosol in the six clusters at sites where this variation is
known. For this paper we examine the seasonal variations at
a few sites where one or more of the six categories is either
dominant or shows a distinct variation. To do this, we plot
the percentage frequency of the records in categories at each
of the selected sites, i.e., how many times does a record get
classified in a category in a given month, normalized by the
total number of records for that month and averaged over
the lifetime of the measurements at the site.
[24] Figure 6a illustrates the classification of the aerosol

records at Cape Verde between October 1994 and December
2002. The Cape Verde (16N, 22W) site is an oceanic site off
the west coast of Africa and directly in the path of westerly
outflows of Saharan dust off the coast of Africa. The figure
shows that the aerosol type is almost exclusively category 1
(desert dust) with a small intrusion of category 2 (biomass
burning) in May. There is also evidence of a small amount
of category 5 (polluted marine) in December. These varia-
tions are consistent with the seasonal trends of the aerosol
type described by others [Chiapello et al., 1997; Tanré et
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al., 2003] at Cape Verde. Banizoumbou (13N, 2E) is an
inland site near the southern edge of the Sahara desert. The
site experiences a high fraction of desert dust throughout the
year as shown in Figure 6b. This site is more likely to
experience category 1 aerosols except in December when
there is a small fraction of biomass burning aerosol (cate-
gory 2). The seasonal variation shown in the figure has been
derived from measurements between October 1995 and
December 2002. Figure 6c shows the trend of aerosol type
frequencies at Solar Village (25N, 46E), a site in the
Arabian desert. The frequencies are based on measurements
between February 1999 and December 2002 and show the
desert dust fractions peaking in the months of April and
May. Also note that between the months of October and
February there is a comparable fraction of polluted conti-
nental aerosol (category 4). This is expected since this site is
in close proximity to the Riyadh metropolitan area (popu-
lation 4.7 million) in heartland of the Arabian peninsula.
[25] Figure 6d shows the aerosol classification at Mongu

(15S, 23E). The aerosol types derived from measurements
at this site between June 1995 and December 2002 are

predominantly biomass burning (category 2) in May–
October and polluted continental in October–March. In
the months of March, April, and May there is a significant
fraction of the highly absorbing aerosol type (dirty pollu-
tion, category 6). The trends for Mauna Loa (19N,155W), a

Figure 5. Distributions of the solar zenith angle and the
single scattering albedos for the records in category 6.

Figure 4. (a) Cumulative distributions of the optical depth, (b) Angstrom coefficient, (c) single
scattering albedo, and (d) imaginary refractive index of the six categories of aerosol found by cluster
analysis.
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category 3 site (clean continental) are shown in Figure 6e.
These are characterized by low optical depths (<0.05) and
though the retrievals of the microphysical properties may be
uncertain, the seasonal variation and the locations of the
sites belonging to this category are consistent with relatively
clean air. The monthly trend shows that the atmosphere is
clean most of the year (category 3 aerosol types are
predominant) except in January when nearly 35% percent
of the records show category 5 (polluted marine) aerosols.
Though Mauna Loa is oceanic, the site is at an elevation of
3397 m above mean sea level, which means measurements
are above the marine boundary layer most of the time and
explains why there is an insignificant frequency of marine-
type aerosols most of the year except January.
[26] Figures 6f and 6g show the aerosol type fractions at

An Myon (36N, 126E) and GSFC (39N, 76W), respectively.
Both sites are category 4 (polluted continental) sites. At An
Myon, there is an influx of desert dust between February
and May corresponding to months when Asian dust episodes
are normally observed. The figure shows the frequency of

aerosol types in records between September 1999 and March
2002. At both sites there is a peak in the fractional frequency
of polluted continental type aerosols during the summer
months. This is an expected trend since both sites are near
industrial and urban sites. The An Myon site is also charac-
terized by small fractions of biomass burning (possibly from
southeast Asian sources) while the GSFC sites experiences
periods of significant clean continental aerosol during the
winter months from November to February. The GSFC data
used for this classification are measurements between May
1993 and December 2002.
[27] Figure 6i shows the seasonal variation of aerosol

types at Lanai (20N,156W), an oceanic site, using data
measured between November 1995 and December 2002.
There is a substantial amount of dust (category 1) in
March–May and biomass burning (category 2) in June–
August. These events are most likely due to long-range
transport of desert dust and smoke from biomass burning.
Though polluted marine is dominant throughout the year,
there are several records classified in the biomass burning

Figure 6. The variation of six categories of aerosol (desert dust, biomass burning, background, polluted
continental, polluted marine, and dirty pollution, denoted by S1, S2, S3, S4, S5, and S6, respectively) at
(a) Cape Verde between October 1994 and December 2002, (b) Banizoumbou between October 1995 and
December 2002, (c) Solar Village between February 1999 and December 2002, (d) Mongu between June
1995 and December 2002, (e) Mauna Loa between June 1994 and December 2002, (f) An Myon between
September 1999 and March 2002, (g) GSFC between May 1993 and December 2002, (h) Lanai between
November 1995 and December 2002, and (i) Skukuza between July 1998 and December 2002.

D10S14 OMAR ET AL.: AEROSOL MODELS FROM AEROSOL ROBOTIC NETWORK

9 of 14

D10S14



cluster throughout the year. The aerosol type at Lanai is
therefore likely mixed with significant amounts of both
organic and elemental carbon since the imaginary part of
the refractive index, shown in Table 2, is quite elevated at
0.0044 compared to 0.001 for a pure marine aerosol
measured at clean oceanic sites [Smirnov et al., 2003].
[28] The aerosol type frequencies at Skukuza (24S, 31E)

are shown in Figure 6i. Skukuza is also a southern African
site in the proximity of biomass burning activities in May to
October. The figure shows this trend in addition to a peak in
the dirty pollution frequencies in January and February.
Category 6 aerosols are characterized by thin layers (mean
optical depth of 0.1) and a high absorption. The imaginary
part of the refractive index of 0.033 resulting in a single
scattering albedo of 0.72 at 673 nm for the center of the
cluster shown in Table 2. Three of the sites belonging to this
cluster (Skukuza, IMS Metu Erdeml, Dalanzadgad) also
belong to the biomass burning cluster, suggesting that the
smoke may have similar sources and the differences be-
tween the two clusters may be due to smoke aging. The plot
shows averaged monthly frequencies of records in catego-
ries for measurements made between July 1998 and
December 2002.

6. Consistency of Aerosol Microphysical
Properties

[29] To check for the consistency of the individual
categories, we divided the measurements in each category
into five optical depth classes and plotted the size distribu-
tions of each class within a category. The results are shown
in Figure 7. Note that for each category, the magnitude of
the fine and coarse mode amplitudes of the size distribution

denotes fine and coarse loading, respectively. As shown, the
mode amplitudes increase with the optical depth for all
types. The optical depth is an extensive property, i.e., a
property that depends on the amount of aerosol, as is the
mode amplitude and this behavior is expected for a given
aerosol type. The fine and coarse mean radii and geometric
standard deviations, on the other hand, are intensive prop-
erties, i.e., properties that depend on the type of aerosol.
These are relatively constant across optical depth classes
within categories. This means that despite changes in the
optical depth, the aerosol size distribution is consistently the
same in each category. While this is not a sufficient
validation of the clustering method, it is an indication of
the ability of the algorithm to group similar data sets using
the prescribed variables.

7. Discussion

[30] The AERONET classification yields six groups of
aerosols shown in Table 3. The table also shows the likely
constituent species of each type inferred from the cluster

Figure 7. Size distributions of (a) dust, (b) biomass burning, (c) background/rural, (d) polluted
continental, (e) marine, and (f) dirty pollution aerosol, i.e., categories 1, 2, 3, 4, 5, and 6, respectively. The
data in each category were partitioned into five aerosol optical thickness (AOT) classes.

Table 3. Likely Composition of Aerosol Types Determined by the

Cluster Analysis

Cluster Category Aerosol Type

1 desert dust (mineral dust)
2 biomass burning (soot + OC)
3 background/rural (SO4

2�, NO3
�, OC, NH4

+)
4 polluted continental (SO4

2�, NO3
�, OC, NH4

+ + soot)
5 polluted marine(NaCl + OC + soot)
6 dirty pollution (SO4

2�, NO3
�, OC, NH4

+ + soot)
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center values of the imaginary refractive indices, single
scattering albedos, and size distributions. Desert dust is
assumed to be mostly mineral soil. Biomass burning is an
aged smoke aerosol consisting primarily of soot and organic
carbon (OC). Rural background, also referred to as clean
continental aerosol is a lightly loaded aerosol consisting of
sulfates (SO4

2�), nitrates (NO3
�), OC, and ammonium

(NH4
+). Polluted marine aerosol consists primarily of seasalt

(NaCl) with traces of polluted continental species. Both
polluted continental and dirty pollution consist of the same
species (OC, soot, SO4

2�, NH4
+, NO3

�) but the large imag-
inary part of the refractive index of dirty pollution suggests
that this type of aerosol contains a significantly larger (than
polluted continental) fraction of soot.
[31] Since some of these records span a period of nearly a

decade, the most conclusive validation of the clustering
algorithm would be to examine a climatology of in situ
measurements at the individual sites. While such in situ data
may become available for more sites in future, there are not
many in situmeasurements of aerosol types at theAERONET
sites. Even if such a climatology were available, it would
only be useful in locations where a given type of aerosol
(say polluted continental) was dominant almost to the
exclusion of all other types. For sites that experience
several different types of aerosols, aerosol optical prop-
erties based on time averages longer than a few hours
would be misleading.

8. Error Analysis of the Clusters

[32] To check for the consistency of the clustering algo-
rithm, we divided the entire data set from 283 stations into
two nearly equal groups and repeated the clustering analy-
sis. These sites were indexed alphabetically (by site name)
with the first site (An Myon referred to as site 1) and the last
site (Wits University referred to as site 283). We then
divided the sites into odd-numbered (sites 1, 3, 5,.., 283)
and even-numbered sites (sites 2, 4, 6,.., 282). Figure 8 shows
locations of the odd and even-numbered sites. The distribu-
tion of the sites, shown in Figure 8, is such that there is little or
no geographic bias in so far as both are nearly equally well
distributed globally. Therefore applying the clustering algo-
rithm to each data set individually should produce the nearly
the same result as using the total data set. Partitioning the data
into these two subsets resulted in 72,728 records from the
odd-numbered stations and 71,185 records from the even-
numbered stations. These two data sets were individually

clustered and compared to the cluster results obtained by
using the entire data set of 143,913 records. The assess-
ment of the clustering is deemed ‘‘correct’’ if the classi-
fication of a record using a subset of the data is the same
as that obtained by clustering the entire data set. The
results of the clustering analysis are shown in Table 4.
Here the rows and columns denote the number of records
of category x in the odd- (or even-) numbered subset that
are classified as category y in the entire data set. The
diagonal (boldface values) contains the number of records
that are grouped in the same category when the subset of
data (odd- or even-numbered sites) and the entire data set
are independently analyzed. The last column (% correct)
refers to the percentage of records in the subset of the
data that is classified correctly. The robustness of the
clustering algorithm is illustrated by the large fraction of
records that are classified in the same category when
three data sets are independently categorized.
[33] In the first row of Table 4, 10,069 (out of a total

of 10,130 or more than 99%) records are classified as
category 1 aerosols in both the subset and the entire data
set. One record is classified as category 1 in the subset

Figure 8. Locations of the odd- and even-numbered sites used for the error analysis.

Table 4. Results of Clustering Odd- and Even-Numbered Subsets

of the AERONET Data Compared to Clustering the Entire Data

Seta

Category 1 2 3 4 5 6 Total
Percent
Correct

Odd-Numbered Sites
1 10,069 1 0 0 60 0 10,130 99.4
2 0 13,373 0 569 0 45 13,987 95.6
3 0 0 10,377 0 0 0 10,377 100.0
4 0 811 0 26,061 0 207 27,079 96.2
5 971 0 0 0 3969 0 4940 80.3
6 0 195 0 174 0 5846 6215 94.1
Total 11,040 14,380 10,377 26,804 4029 6098 72,728

Even-Numbered Sites
1 11,870 0 0 0 202 0 12,072 98.3
2 0 12,127 0 461 0 87 12,675 95.7
3 0 0 9930 0 0 0 9930 100.0
4 0 1420 0 27,163 0 5 28,588 95.0
5 13 0 0 0 1574 0 1587 99.2
6 0 2116 0 258 0 3959 6333 62.5
Total 11,883 15,663 9930 27,882 1776 4051 71,185
aValues in boldface are the number of records that are grouped in the

same category when the subset of data (odd- or even-numbered sites) and
the entire data set are independently analyzed.
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and category 2 in the entire data set and 60 of these
records are classified as category 1 in the subset and
category 5 in the entire data. Note that dust and marine
aerosol share the characteristics of a large coarse fraction
and a small imaginary part of the refractive index and
therefore a small percentage of the desert dust aerosol
(6%) is likely to be misclassified as marine aerosol. In
the second row, 13,373 (more than 95%) records of the
odd-numbered sites data subset are correctly classified as
category 2 aerosols. A small number of category 2 (biomass
burning) records (569�4%) are mischaracterized as category
4 (polluted continental) because of the similarity (of
refractive indices, size distributions) of the two aerosol
types. The third row shows using the odd-numbered subset
and the entire data set has the same result, i.e., all category
3 records are grouped in the same class. Category 3 (clean
continental) records have a low optical depth and the
retrieved microphysical parameters are quite uncertain.
This is somewhat encouraging in that it shows the clus-
tering algorithm is insensitive to uncertainties if these are
associated with only a few parameters. More than 96% of
the category 4 records are classified correctly. A few
misclassifications of 3% and 1% are grouped in category 2
(biomass burning) and category 6 (dirty pollution) respec-
tively, i.e., aerosols are misclassified into groups that have
similar microphysical and optical characteristics. The next
row shows that 3969 (�80%) of the category 5 (marine)
records are classified correctly and the remaining 20% are
misclassified as category 1 (desert dust). The dirty pollution
records (category 6) are correctly classified in more than 94%
of the records and the misclassified records are grouped in
category 2 (biomass burning).
[34] The analysis of the even-numbered sites yielded

results that are quite similar to the odd-numbered sites
described above. Of the records the even-numbered sites
subset of data, categories 1, 2, 3, 4, and 5 aerosols were
classified correctly 98%, 96%, 100%, 95%, and 99%,
respectively, of the records in the even-numbered sites subset
of data. A significant percentage (37.5%) of the category 6
(dirty pollution) is misclassified as category 2 (biomass
burning) aerosol. As in the odd sites subset, all the category
3 records in the even sites subset are correctly classified.
[35] The subdivision of data sets by the arbitrarily chosen

odd/even site indices is akin to random sampling of the data
to produce two unrelated data subsets and forms an objec-
tive test of the algorithm. Furthermore, in cases where data
is miscategorized, the misclassified records are placed in
groups that have similar microphysical and optical charac-
teristics. The misclassified desert dust records are likely to
be grouped with marine aerosols and vice versa, biomass
burning aerosols are likely to be misclassified as continental
pollution and vice versa; misclassified dirty pollution
records likely to be categorized as biomass burning aerosols
and vice versa. In summary, the clustering algorithm is quite
robust. The algorithm reproduced the correct classification
in 94.7% of all the records tested, i.e., the algorithm error
rate is less than 6%.

9. Error Propagation

[36] A small subset of the data was used to test the effects
of the uncertainty in the retrieved microphysical parameters

on the cluster results. We selected 5% of the total data set
and applied the cluster analysis to partition the data into six
categories. As shown above, clustering the subsets of the
data yields classifications similar to those obtained using the
whole data set. We then added a 10% normally distributed
random error to the complex refractive index and size
distribution parameters to obtain a new set of ‘‘noisy’’ data.
These noisy records were used as inputs to the scattering
calculations to yield perturbed optical parameters. The
error-laden optical and microphysical parameters are then
used as variables in the clustering algorithm. An objective
measure of the robustness of the clustering algorithm is the
percentage of records classified in the same category using
the error-free and error-laden data. A quantitative measure
of the effect of noise on the cluster analysis is the Euclidean
distance, in 26-parameter space, between the centers of the
new clusters (Cn, obtained using the perturbed data set) and
old clusters (Co obtained using the error free data set) in
each corresponding category. This distance Dde is defined
by

Dde ¼
Cn � Coj j
Cstd

; ð3Þ

where we have normalized the distance by the standard
deviation Cstd of the distributions of the individual record
distances from the unperturbed center.
[37] The test was repeated for ten realizations of the

randomly generated optical and microphysical properties.
The test checks whether say, a record classified as biomass
burning in the error-free data set is classified as a biomass
burning record in the error-laden data and by how much
does the new center shift. Table 5 below shows the results of
the error propagation tests. The shift in the centers of the
clusters of the perturbed data set are presented as normal-
ized Euclidean distances. The table shows that the largest
shift in the centers occurs in category 6 (dirty pollution), an
expected result since this category has a relatively small
number of data points. The error propagation tests show that
the error in the classification due to a 10% error in the
retrieved parameters (size distributions and complex refrac-
tive indices) is less than 9%, i.e., given a 10% error in the

Table 5. Uncertainty Analysis of the Categorization Using a 10%

Random Error Propagated Through the Microphysical Properties to

the Optical Properties and Clustering Algorithma

Test

Category Correct
Classification, %1 2 3 4 5 6

1 0.042 0.068 0.050 0.047 0.137 0.204 91.3
2 0.049 0.065 0.044 0.026 0.080 0.127 92.1
3 0.043 0.097 0.024 0.032 0.077 0.129 92.2
4 0.027 0.061 0.034 0.044 0.084 0.170 91.8
5 0.022 0.079 0.026 0.023 0.056 0.143 91.6
6 0.043 0.071 0.047 0.034 0.068 0.140 91.2
7 0.030 0.078 0.036 0.022 0.067 0.127 91.9
8 0.032 0.061 0.031 0.025 0.078 0.150 91.7
9 0.065 0.079 0.034 0.026 0.089 0.145 91.6
10 0.040 0.089 0.050 0.026 0.074 0.134 94.7
Average 0.039 0.075 0.038 0.031 0.081 0.147 92.0

aThe table shows the normalized Euclidean distances between the free
and perturbed cluster centers for each category found in 10 independent
tests.
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retrieved parameters, at least 91% of the records will be
correctly classified.

10. Conclusion

[38] A global data set, AERONET, has been used to
identify main clusters of aerosol types and to determine
microphysical properties of aerosol groups. The clustering
algorithm objectively groups all the 143,000+ records
examined into six categories. Using the mean values of
the optical and microphysical properties together with the
geographic locations, we identified these categories as
desert dust, biomass burning, urban industrial pollution,
rural background, polluted marine, and dirty pollution and
presented the mean properties of these aerosol models.
The effects of aerosol particle nonsphericity on the cluster
analysis are unknown but not negligible. We expect that
these models will enhance the available database of the
characteristics of aerosol types. Since the cluster analysis
assigned a category to each record, it is possible to
examine the frequency of occurrence of different types
of aerosols at each station. The data showed periods of
intense biomass burning activity and desert dust genera-
tion consistent with independent observations. The varia-
tion of the extensive and intensive size distribution
properties within categories showed consistent trends. In
particular, when each cluster was subdivided by optical
depth class, the trends of the class size distributions show
that the extensive properties (mode amplitude and total
volume) vary by optical depth while the intensive prop-
erties (mean radius and standard deviation) are relatively
constant. The uncertainty and sensitivity tests showed that
the clustering algorithm is quite robust and reproduces
more than 94% of the classification when the data is
arbitrarily halved. When random errors of 10% are added
to the microphysical properties and propagated through
the optical properties and the clustering algorithm, the
records are correctly classified at a rate of at least 91%.
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metallösungen, Ann. Phys., 25(4), 377–445.

Mishchenko, M. I., A. A. Lacis, B. E. Carlson, and L. D. Travis (1995),
Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol
remote sensing and climate modeling, Geophys. Res. Lett., 22(9), 1077–
1080.

Müller, D., F. Wagner, D. Althausen, U. Wandinger, and A. Ansmann
(2000), Physical properties of the Indian aerosol plume derived from
six-wavelength lidar observations on 25 March 1999 of the Indian Ocean
Experiment, Geophys. Res. Lett., 27(9), 1403–1406.

National Research Council (NRC) (1996), A plan for a research program
on aerosol radiative forcing and climate change, Natl. Acad. of Sci.,
Washington, D. C.

Nemesure, S., R. Wagener, and S. E. Schwartz (1995), Direct shortwave
forcing of climate by anthropogenic sulfate: Sensitivity to particle size,
composition, and relative humidity, J. Geophys. Res., 100, 26,105–
26,116.

Penner, J. E., R. E. Dickinson, and C. A. O’Neill (1992), Effects of aerosol
from biomass burning on the global radiation budget, Science, 256,
1432–1434.

Raes, F., T. Bates, F. McGovern, and M. V. Liedekerke (1999), The 2nd
Aerosol Characterization Experiment (ACE-2), General overview and
main results, Tellus, Ser. B, 52(2), 111–125.

Ramanathan, V., et al. (2001), Indian Ocean Experiment: An integrated
analysis of the climate forcing and effects of the great Indo-Asian haze,
J. Geophys. Res., 106(22), 28,371–28,398.

Reid, J. S., P. V. Hobbs, R. J. Ferek, D. R. Blake, J. V. Martins, M. R.
Dunlap, and C. Liousse (1998), Physical, chemical, and optical properties
of regional hazes dominated by smoke in Brazil, J. Geophys. Res.,
103(D24), 32,059–32,080.

Russell, P. B., P. V. Hobbs, and L. L. Stowe (1999), Aerosol properties and
radiative effects in the United States East Coast haze plume: An overview
of the Tropospheric Aerosol Radiative Forcing Observational Experiment
(TARFOX), J. Geophys. Res., 104, 2213–2222.

Sheridan, P. J., D. J. Delene, and J. A. Ogren (2001), Four years of con-
tinuous surface aerosol measurements from the Department of Energy’s
Atmospheric Radiation Measurement Program Southern Great Plains
Cloud and Radiation Testbed site, J. Geophys. Res., 106(D18),
20,735–20,748.

Smirnov, A., B. N. Holben, O. Dubovik, R. Frouin, T. F. Eck, and I. Slutsker
(2003), Maritime component in aerosol optical models derived from Aero-

D10S14 OMAR ET AL.: AEROSOL MODELS FROM AEROSOL ROBOTIC NETWORK

13 of 14

D10S14



sol Robotic Network data, J. Geophys. Res., 108(D1), 4033, doi:10.1029/
2002JD002701.

Sokolik, I. N., and O. B. Toon (1999), Incorporation of mineralogical
composition into models of the radiative properties of mineral aerosol
from UV to IR wavelengths, J. Geophys. Res., 104(D8), 9423–9444.

Sokolik, I. N., D. M. Winker, G. Bergametti, D. A. Gillette, G. Carmichael,
Y. J. Kaufman, L. Gomes, L. Schuetz, and J. E. Penner (2001), Introduc-
tion to special section: Outstanding problems in quantifying the radiative
impacts of mineral dust, J. Geophys. Res., 106(D16), 18,015–18,028.
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